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1. The index of a critical point

This topic explores some geometric and topological aspects of planar autonomous sys-
tems. We’ll start with a 2×2 planar autonomous system, with a C2 vector field (actually,
this whole thing will go through with a C0 vector field, but to avoid technical difficulties,
we will just always assume that our vector field is as differentiable as it needs to be).

(1.1)

(
ẋ
ẏ

)
= F (x, y) =

(
f(x, y)
g(x, y)

)
Our next ingredient is a (special type of) plane curve. Let Γ : [s0, s1] → R2 be a simple,
smooth, closed plane curve oriented counterclockwise on which F has no critical points.
By simple we mean that Γ has no self intersections, by smooth, we mean differentiable
as many times as we want, and by closed we mean boundaryless. Boundaryless in the
sense of a curve means that if Γ(s0) = (γ1(s0), γ2(s0)) and Γ(s1) = (γ1(s1), γ2(s1)), then

Γ(s0) = Γ(s1). We have that at each point of Γ, there is a (nonzero) vector

(
f(x, y)
g(x, y)

)
,

and for each of these vectors, we can measure θ, the angle of inclination of

(
f(x, y)
g(x, y)

)
with

the horizontal, measured counter clockwise. Note that this means that

(1.2) tan(θ) =
g

f
.

So in this sense we have that θ = θ(s) a function of one variable, as we move through our
curve Γ. Because the vector field is smooth (continuous) and because our curve is closed,
we must have that θ(s1) = θ(s0) + 2πn for n ∈ Z.

Definition 1.1. The Poincaré index of Γ relative to the vector field F is defined to be
this integer n.

IΓ(F ) := n =
θ(s1)− θ(s0)

2π

If our vector field, and the parametrisation of Γ are both C1, then we have a means of
computing IΓ(F ). We have that

tan (θ(s)) =
g(x(s), y(s))

f(x(s), y(s))
,
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and so

θ(s) = arctan

(
g(x(s), y(s))

f(x(s), y(s))

)
.

Thus we can write

IΓ(F ) =
θ(s1)− θ(s0)

2π
=

1

2π

∫ s1

s0

d

ds
θ(s)ds ≡ 1

2π

∮
Γ

dθ

This last term will be used for notational convenience later on. We have that

d

ds
θ(s) =

f d
ds
g − d

ds
fg

f 2 + g2

and so

IΓ(F ) =
1

2π

∫ s1

s0

f d
ds
g − d

ds
fg

f 2 + g2
ds =

1

2π

∮
Γ

fdg − dfg
f 2 + g2

from the definition of the line integral. Here df = fxdx+ fydy, means the ‘total exterior
derivative’ or sometimes just the ‘total derivative’ of the function f .

Example 1.1. Let’s do a straightforward example to get a handle on what is going on.
Let’s consider the (nice, linear) vector field:

ẋ = y ẏ = x.

We let Γ = (r cos(s), r sin(s)) the circle of radius r around the origin, oriented counter
clockwise. We have

IΓ(F ) =
1

2π

∮
Γ

ydx− xdy

x2 + y2
=

1

2π

∫ 2π

0

−r2 sin2(s)− r2 cos2(s)

r2
ds = −1.

By the way, this is independent of the size of the circle that we’ve chosen.

We have the following theorem:

Theorem 1.1. Suppose that Γ is a simple closed curve. Let F be a C2 vector field defined
on Γ and its interior DΓ. Suppose that there are no critical points of F in the set Γ∪DΓ.
Then IΓ(F ) = 0.
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Proof. First, we observe that Γ being a simple closed curve means that DΓ is what’s
called simply connected. There are many equivalent definitions of this term, which we
won’t really need for this class, but intuitively, you can think of simply connected regions
in the plane as being ‘without any holes’. Now, Green’s theorem in the plane says that∮

Γ

(Pdx+Qdy) =

∫∫
DΓ

(Qx − Py) dxdy.

Okay, so we have that

IΓ(F ) =
1

2π

∫ s1

s0

f d
ds
g − d

ds
fg

f 2 + g2
ds.

Now we can write
d

ds
f = fx

dx

ds
+ fy

dy

ds
and

d

ds
g = gx

dx

ds
+ gy

dy

ds
.

Substituting this in gives

IΓ(F ) =
1

2π

∮
Γ

fgx − fxg
f 2 + g2

dx+
fgy − fyg
f 2 + g2

dy

=
1

2π

∫∫
DΓ

∂

∂x

(
fgy − fyg
f 2 + g2

)
− ∂

∂y

(
fgx − fxg
f 2 + g2

)
= 0.

Here we used Green’s theorem in the plane and the fact that there are no critical points
of the vector field inside DΓ to get to the second step, and then the third equals sign is
(gross but doable) algebraic computation. �

So this theorem is nice, but what it really implies is the following (perhaps more im-
pressive) fact:

Corollary 1.1. Let Γ1 and Γ2 be simple closed curves with DΓ1 ⊆ DΓ2 , and let F be
defined everywhere on DΓ2. Then if F has no critical points in the region between and

including them DΓ2 \DΓ1, then IΓ2(F ) = IΓ1(F ).

The point of this corollary is that if you can ‘deform’ one curve to another without
passing through a critical point of the vector field F , then the curves must have the same
indices relative to the vector field.

Proof. Let A2A1 be a line running from Γ2 to Γ1. We have by hypothesis that there are
no critical points in the region bounded by the curve C := Γ2 ∪A2A1 ∪−Γ1 ∪A1A2 where
−Γ1 means Γ1 but oriented in the reverse direction, and A1A2 = −A2A1. Thus we have
that IC(F ) = 0. But

0 = IC(F ) =
1

2π

∮
C

dθ =
1

2π

(∮
Γ2

dθ +

∮
A2A1

dθ −
∮

Γ1

dθ +

∮
A1A2

dθ

)

⇒ IΓ1(F ) = IΓ2(F )

�

What this says is that to a large extent IΓ(F ) is independent of Γ, or that, more or less
any simple closed curve around a critical point has the same index. Thus we can drop the
Γ subscript, and if the vector field is obvious from the context, we can drop the reference
to that to, and just refer to I as the index of the critical point.

Now the game is to just go through and compute some indices, as well as some various
properties.
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Lemma 1.1. Let A =

(
a b
c d

)
be a 2 × 2 matrix with real coefficients, and such that

det(A) 6= 0. Then the index of the origin of the vector field ẋ = Ax is

I = sign(det(A)) =
det(A)

| det(A)|
.

Proof. Exercise. �

Lemma 1.2. Suppose that x∗ is a critical point of a planar autonomous system ẋ = F (x).
Suppose that the linerisation of F at x∗ is hyperbolic. Then Ix∗(F ) = I0(DF (x∗)) that is,
the index of F at the critical point is the index of the origin of the linearisation.

Proof. The proof would take us too far afield, so we’re not going to establish the necessary
tools to prove this rigourously, but the basic idea is that the Hartman-Grobman theorem
allows us to (locally) swap back and forth between a neighbourhood of a hyperbolic critical
point and a neighbourhood of the origin of its linearisation without disrupting the vector
field (and hence the index of the critical point) in the neighbourhood. �

These lemmata, plus the classification of 2× 2 linear systems from earlier allows us to
compute the indices of the linearisations of a lot of critical points. In particular, anything
hyperbolic.

Lemma 1.3. Suppose that Γ surrounds n critical points P1, P2, . . . Pn. Let Ij be the index
of point Pj. Then

IΓ =
n∑
j=1

Ij.

Proof. The proof is by picture. See figure 3. �

Lemma 1.4. Let γ be a periodic orbit of a vector field. Then Iγ = 1.
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Figure 3. The integrals on the ‘bridges’ cancel out.

Proof. Again the proof is by picture. Effectively, this is because γ is a simple closed curve,
and the vector field is tangent to γ by hypothesis. �

or

Figure 4. Proof of lemma 1.4. Whether the flow points in the direction of
the parametrisation or against it, the vector field only rotates around once
as the curve γ is traversed.

This last lemma allows you to compute the index of a nonlinear centre in the case that
you can find a Hamiltonian function - that is a function whose level sets are phase curves
of your vector field near the critical point.

2. The vector field at infinity

We now move onto a new topic which will give us one way of thinking about how our
vector field behaves as the base points get large. We’re going to define something called
‘the vector field at infinity’. It should be noted right now that this is only one way to
define such an object. There are others, which are not equivalent, though they are also
useful and interesting objects of study.
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If we denote our planar vector field by

ẋ = f(x, y)

ẏ = g(x, y)
(2.1)

and we introduce new coordinates (called ‘inverting the origin’):

x1 =
x

x2 + y2

y1 =
−y

x2 + y2
,

(2.2)

and compute ẋ1 and ẏ1 in terms of x, y, ẋ, and ẏ and then replace ẋ with f(x, y) and ẏ
with g(x, y), and then use the fact that eq. (2.3) implies that

x =
x1

x2
1 + y2

1

y =
−y1

x2
1 + y2

1

.
(2.3)

to get a new planar system

ẋ1 = f1(x1, y1)

ẏ1 = g1(x1, y1).
(2.4)

This new equation, eq. (2.4) is called the vector field at ∞ with respect to eq. (2.1).
Let’s do some examples.

Example 2.1. Suppose we consider the linear equation:

ẋ = −y
ẏ = x.

(2.5)

Then we have that

ẋ1 =
ẋ(x2 + y2)− x(2xẋ+ 2yẏ)

(x2 + y2)2
=
−y(x2 + y2)− x(−2xy + 2yx)

(x2 + y2)2
= y1

ẏ1 =
−ẏ(x2 + y2)−+y(2xẋ+ 2yẏ)

(x2 + y2)2
=
−x(x2 + y2) + y(−2xy + 2yx)

(x2 + y2)2
= −x1.

(2.6)

So we have a new system in our new coordinates:

ẋ1 = y1

ẏ1 = −x1,
(2.7)

and we see the vector field at infinity is just another linear centre, this time rotating in
the other direction. See Figure 5.
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Figure 5. The vector field eq. (2.5) on the left, and the corresponding
vector field at infinity eq. (2.6) on the right.

Example 2.2. That last example was maybe too easy. Lets consider the saddle:

ẋ = y

ẏ = x.
(2.8)

Then we have this time that

ẋ1 =
3x2

1y1 − y3
1

x2
1 + y2

1

ẏ1 =
3x1y

2
1 − x3

1

x2
1 + y2

1

.

(2.9)

Again for a picture of the vector field, see Figure 6.
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Figure 6. The vector field eq. (2.8) on the left, and the corresponding
vector field at infinity eq. (2.9) on the right.

7 c©University of Sydney



R Marangell Index Theory

Example 2.3. As a final example, consider the Duffing oscillator:

ẋ = y

ẏ = x− x3.
(2.10)

The vector field at infinity corresponding to eq. (2.10) is (this one is a little messier):

ẋ1 = −y1 −
2x4

1y1

(x2
1 + y2

1)3
+

4x2
1y1

x2
! + y2

1

ẏ1 =
−x7

1 + 3x1y
6
1 + x5

1 + x5
1y

2
1 − x3

1y
2
1 + 5x3

1y
4
1

(x2
1 + y2

1)3
.

(2.11)

Again, for a plot of the vector fields, see Figure 7.
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Figure 7. The vector field eq. (2.10) on the left, and the corresponding
vector field at infinity eq. (2.11) on the right.

The inspiration for this particular transformation comes from the inversion of the

(nonzero) complex plane z1 =
1

z
. Sometimes it is easier to use complex notation. That is

we can write z = x+ iy and h(x, y) = f(x, y) + ig(x, y). Our ODE then becomes

ż = h(x, y)

This is not in general going to be an analytic function, but that’s not a huge deal, we just
need to be careful about our coordinate transformation. Now the new coordinates are

z1 =
1

z

which we get from setting z1 = x1 + iy1 and then plugging in the formula for x1 and y1.
Further we have that

ż1 =
−1

z2
ż = −z2

1h(x, y)

Finally, it is worth noting that this inversion in polar coordinates is given as r1 =
1

r
and θ1 = −θ.

Now, besides being interesting in its own right, one reason to introduce this coordinate
transform is that it gives a definition of the so-called index at infinity of our original vector
field. In many of these cases, the vector field at infinity is quite singular at the origin (in
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the new coordinates). However, there is still a well defined index of the vector field at 0.
We’ll take this to be the definition of the index of our original vector field at infinity.

Example 2.4. Suppose we have take the linear system in eq. (2.5). This is a centre, and
as we have a periodic orbit around 0, we have that the index of 0 is 1. We also have that
the vector field at infinity is a centre going the other way, and we have again that the
index at 0 of this new vector field is 1. Thus the index at infinity of the original system
is also 1.

Example 2.5. Let’s consider the saddle. We have that the index of the origin is −1.
Let’s compute the index at infinity of this system. In this case it is easiest to switch to
complex notation. We have h = y+ ix = i(x− iy) = iz̄ which is not an analytic function.
Now we switch to our ‘inverted’ coordinates, we have the ODE

(2.12) ż1 = −z2
1iz̄ =

−iz2
1

z̄1

= − iz3
1

|z1|2
.

I think that the simplest way to compute the index of the origin of this guy is to switch
to polar coordinates. Writing z1 = r1e

iθ1 the expression for ż1 becomes

ż1 = r1e
i(3θ1−π

2 ),

and if we let γ = eis be the unit circle, then we can see that

1

2π

∮
γ

dθ1 =
1

2π

∫ 2π

0

3ds = 3.

In this instance, we interpret dθ1 as the total derivative of the function which is the angle
of the vector field with the horizontal, that is 3ds. Alternatively, you can compute things
directly in terms of the x1 and y1 coordinates and compute the index of the origin. That
is write

ẋ1 =
x3

1 − 3x1y
2
1

x2
1 + y2

1

= f(x1, y1)

ẏ1 =
3x2

1y1 − y3
1

x2
1 + y2

1

= g(x1, y1).

(2.13)

Then, letting γ = (cos(s), sin(s)), you compute

1

2π

∮
γ

fdg − dfg

f 2 + g2
= (after a fair bit of algebra) =

1

2π

∫ 2π

0

3ds = 3.

Fortunately which ever way you compute it, the index of the saddle at infinity is 3.

You can (and should) verify for yourself that the indices at infinity of the Duffing
oscillator is 1.

Another reason for introducing these complex coordinates is that we have the following
theorem:

Theorem 2.1 (Poincaré-Hopf Index Theorem). Suppose you have a planar autonomous

C1 vector field

(
ẋ
ẏ

)
= F (x, y) with a finite number of critical points P1, P2 . . . Pn with

indices I1, I2, . . . , In. Further denote the index at infinity by I∞. Then we have

n∑
j=i

Ij + I∞ = 2.
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Proof. To compute the index at infinity, surround 0 in the z1 plane by a curve γ1 which

contains no other equilibria besides (0, 0). Then because we have the relation z1 =
1

z
the

curve γ1 is transformed in the z plane into a new curve γ which encircles all the Pis. In
the z1 plane we write ż1 = −z2

1h =: h1. On γ1 write z1 = r1e
iφ1 and h1 = ρ1e

iθ1 . On γ
write h = ρeiθ. We have that

I∞ =
1

2π

∮
γ1

dθ1.

We then have
h1 = −z2

1ρe
iθ = −r2

1e
i2φ1eiθ = r2

1ρe
i(2φ1+θ+π).

Thus

I∞ =
1

2π

∮
γ1

d (2φ1 + θ + π) =
1

2π

(∮
γ1

2dφ1 +

∮
γ1

dθ

)
=

1

2π

(
4π −

∮
γ2

dθ

)
=

1

2π

(
4π − 2π

n∑
j=1

In

)
.

Rearranging the final equality gives the result. �

Besides being an elegant result in its own right, this theorem is very useful for computing
the index at infinity - reducing it to almost a trivial task.

10 c©University of Sydney


	1. The index of a critical point
	2. The vector field at infinity

